
CNT 4714: Threading Part 1 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2011

Programming Multithreaded Applications in Java

Part 1

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/spr2011

CNT 4714: Threading Part 1 Page 2 Mark Llewellyn ©

Introduction to Threads in Java
• In state-of-the art software, a program can be composed of

multiple independent flows of control.

• A flow of control is more commonly referred to as a process or

thread.

• In most of the Java programs that you’ve written (probably)

there was a single flow of control. Most console-based
programs begin with the first statement of the method main()

and work forward to the last statement of the method main().

Flow of control is often temporarily passed to other methods
through invocations, but the control returned to main() after

their completion.

• Programs with a single control flow are known as sequential

processes.

CNT 4714: Threading Part 1 Page 3 Mark Llewellyn ©

Introduction to Threads in Java (cont.)

• Java supports the creation of programs with concurrent flows of

control. These independent flows of control are called threads.

• Threads run within a program and make use of that program’s

resources in their execution. For this reason threads are also

called lightweight processes (LWP).

• The ability to run more than one process simultaneously is an

important characteristic of modern OS such as Linux/Unix and

Windows.

– The following two pages show screen shots of a set of

applications running on my office PC as well as the set of OS and

applications processes required to run those applications.

CNT 4714: Threading Part 1 Page 4 Mark Llewellyn ©

Applications running on

my office PC

CNT 4714: Threading Part 1 Page 5 Mark Llewellyn ©

Some of the processes

running the applications

running on my office PC

CPU working hard!!!

CNT 4714: Threading Part 1 Page 6 Mark Llewellyn ©

Using Threads To Improve Performance

One Thread

Thread 1

Time

Task 1 Wait for I/O Task 1 Wait for I/O Task 2

Two Threads

Thread 1

Thread 2

Time

Task 1 Wait for I/O Task 1 Wait for I/O

(Idle) Task 2 (Idle) Task 2

CNT 4714: Threading Part 1 Page 7 Mark Llewellyn ©

Improving Performance With Multithreading

• As the diagram on the previous page implies, applications

that perform several tasks which are not dependent on one

another will benefit the most from multithreading.

• For example, in the previous diagram, Task 2 can only be

overlapped with Task 1 if Task 2 doesn’t depend on the

results of Task 1.

• However, some overlap between the two tasks may still be

possible even if Task 2 depends on the results of Task 1. In

this case the two tasks must communicate so that they can

coordinate their operations.

CNT 4714: Threading Part 1 Page 8 Mark Llewellyn ©

Improving Performance With Multithreading
(cont.)

• Writing multithreaded programs can be tricky and

complicated, particularly when synchronization between

threads is required.

• Although the human mind can perform many functions

concurrently, people find it difficult to jump between parallel

trains of thought.

• To see why multithreading can be difficult to program and

understand, try the experiment shown on the following page.

CNT 4714: Threading Part 1 Page 9 Mark Llewellyn ©

Multithreading Experiment

Page 1

Page 2

Page 3

In this chapter, we

introduce Swing

components that

enable developers to

build functionally rich

user interfaces.

The Swing graphical

interface components

were introduced with the

Java Foundation Classes

(JFC) as a downloadable

extension to the Java 1.1

Platform, then became a

standard extension with

the Java 2 Platform.

Swing provides a more

complete set of GUI

components than the

Abstract Windowing

Toolkit (AWT), including

advanced features such

as a pluggable look and

feel, lightweight

component rendering

and drag-and-drop

capabilities.

The experiment: Try reading the pages above concurrently by

reading a few words from the first page, then a few words from the

second page, then a few words from the third page, then loop

back and read a few words from the first page, and so on. Does

anything make sense? Can you construct a single sentence from

what you have read? Can you remember on which page a

particular word appeared? Can you even remember when you get

back to the first page where you left off?

CNT 4714: Threading Part 1 Page 10 Mark Llewellyn ©

Typical Multithreaded Applications

• Used to improve the performance of applications which

require extensive I/O operations.

• Useful in improving the responsiveness of GUI-based

applications.

• Used when two or more clients need to run server-based

applications simultaneously.

Note: on a single CPU machine, threads don’t actually execute

simultaneously. Part of the JVM known as the thread scheduler time-slices

threads which are runnable (we’ll see more of this in a bit) giving the

illusion of simultaneous execution.

CNT 4714: Threading Part 1 Page 11 Mark Llewellyn ©

A multithreaded program

ends when all of its

individual flows of control

(threads) end.

Multithreaded Program

{

statement 1;

statement 2;

…

statement x;

…

statement y;

…

statement z;

}

Thread B

{

B statement 1;

B statement 2;

…

statement r;

}

Thread C

{

C statement 1;

C statement 2;

…

C statement t;

}

Thread A

{

A statement 1;

A statement 2;

…

A statement m;

…

A statement n;

}

This statement starts thread

B. After starting the thread,

the program continues with

the next statement.

This statement starts

thread A. After starting

thread A, the program

continues with the next

statement.

This statement in

thread A starts thread

C. Thread A continues

with next statement.

CNT 4714: Threading Part 1 Page 12 Mark Llewellyn ©

Thread A

Thread B

Thread C

Thread Execution in a Multiprocessor Environment

Thread C

Thread B

Thread A

Thread Execution in a Uniprocessor Environment

CNT 4714: Threading Part 1 Page 13 Mark Llewellyn ©

The Java Thread Class

java.lang.Runnable

java.lang.Thread

+Thread()

+Thread (target: Runnable)

+run(): void

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+isInterrupted(): boolean

+currentThread(): Thread

Creates a default thread.

Invoked by the JVM to execute the thread. You must override this

method and provide the code you want your thread to execute in your

thread class. This method is never directly invoked by a the runnable

object in a program, although it is an instance method of a runnable

object.

Starts the thread that causes the run() method to be invoked by the JVM

Interrupts this thread. If the thread is blocked, it is ready to run again.

Tests if the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Creates a new thread to run the target object

Causes this thread to temporarily pause and allow other threads to execute

Tests if the current thread has been interrupted

Returns a reference to the currently executing thread object.

CNT 4714: Threading Part 1 Page 14 Mark Llewellyn ©

Java Classes and Threads

• Java has several classes that support the creation and

scheduling of threads.

• The two basic ways of creating threads in Java are:

– 1) extending the Thread class

– or 2) implementing the Runnable interface.

(Both are found in package java.lang. Thread actually

implements Runnable.)

• We’ll also look at a slightly different technique for

creating and scheduling threads later using the

java.util.Timer and java.util.TimerTask

classes.

CNT 4714: Threading Part 1 Page 15 Mark Llewellyn ©

Java Classes and Threads (cont.)

• The following two simple examples, illustrate the differences in

creating threads using these two different techniques.

• The example is simple, three threads are created, one that prints

the character ‘A’ twenty times, one that prints the character ‘B’

twenty times, and a third thread that prints the integer numbers

from 1 to 20.

• The first program is an example of extending the thread class.
The second program is an example of using the Runnable

interface. This latter technique is the more common and

preferred technique. While we will see more examples of this

technique later, this simple example will illustrate the

difference in the two techniques.

CNT 4714: Threading Part 1 Page 16 Mark Llewellyn ©

//Custom Thread Class

Public class CustomThread extends Thread

{ …

public CustomThread(…)

{

…

}

//Override the run method in Thread

//Tell system how to run custom thread

public void run()

{

…

}

…

} //end CustomThread Class

//Client Class to utilize CustomThread

Public class Client

{ …

public void someMethod()

{

…

//create a thread

CustomThread thread1 =

new CustomThread(…);

//start a thread

thread1.start();

…

//create another thread

CustomThread thread2 =

new CustomThread(…);

//start another thread

thread2.start();

…

}

…

} //end Client Class

Template for defining a thread class by

extending the Thread class. Threads

thread1 and thread2 are runnable objects

created from the CustomThread class.

The start method informs the system that

the thread is ready to run.

CNT 4714: Threading Part 1 Page 17 Mark Llewellyn ©

//Custom Thread Class

Public class CustomThread implements Runnable

{ …

public CustomThread(…)

{

…

}

//Implement the run method in Runnable

//Tell system how to run custom thread

public void run()

{

…

}

…

} //end CustomThread Class

//Client Class to utilize CustomThread

Public class Client

{ …

public void someMethod()

{

…

//create an instance of CustomThread

CustomThread custhread =

new CustomThread(…);

…

//create a thread

Thread thread =

newThread(custhread);

…

//start a thread

thread.start();

…

}

…

} //end Client Class

Template for defining a thread class by

implementing the Runnable interface. To start

a new thread with the Runnable interface, you

must first create an instance of the class that

implements the Runnable interface (in this

case custhread), then use the Thread class

constructor to construct a thread.

CNT 4714: Threading Part 1 Page 18 Mark Llewellyn ©

Start thread execution

after a 0 msec delay

(i.e., immediately)

//Class to generate threads by extending the Thread class

public class TestThread {

// Main method

public static void main(String[] args) {

// Create threads

PrintChar printA = new PrintChar('a', 20);

PrintChar printB = new PrintChar('b', 20);

PrintNum print20 = new PrintNum(20);

// Start threads

print20.start();

printA.start();

printB.start();

}

}

// The thread class for printing a specified character a specified number of times

class PrintChar extends Thread {

private char charToPrint; // The character to print

private int times; // The times to repeat

// Construct a thread with specified character and number of times to print the character

public PrintChar(char c, int t) {

charToPrint = c;

times = t;

}

Extension of the Thread

class

CNT 4714: Threading Part 1 Page 19 Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do

public void run() {

for (int i = 0; i < times; i++)

System.out.print(charToPrint);

}

}

// The thread class for printing number from 1 to n for a given n

class PrintNum extends Thread {

private int lastNum;

// Construct a thread for print 1, 2, ... i

public PrintNum(int n) {

lastNum = n;

}

// Tell the thread how to run

public void run() {

for (int i = 1; i <= lastNum; i++)

System.out.print(" " + i);

}

} //end class TestThread

Overriding the run method

in the Thread class

CNT 4714: Threading Part 1 Page 20 Mark Llewellyn ©

Sample executions of class TestThread. Notice that the

output from the three threads is interleaved. Also notice

that the output sequence is not repeatable.

CNT 4714: Threading Part 1 Page 21 Mark Llewellyn ©

Main method simple

creates a new

Runnable object and

terminates.

//Class to generate threads by implementing the Runnable interface

public class TestRunnable {

// Create threads

Thread printA = new Thread(new PrintChar('a', 20));

Thread printB = new Thread(new PrintChar('b', 20));

Thread print20 = new Thread(new PrintNum(20));

public static void main(String[] args) {

new TestRunnable();

}

public TestRunnable() {

// Start threads

print20.start();

printA.start();

printB.start();

}

// The thread class for printing a specified character in specified times

class PrintChar implements Runnable {

private char charToPrint; // The character to print

private int times; // The times to repeat

// Construct a thread with specified character and number of times to print the character

public PrintChar(char c, int t) {

charToPrint = c;

times = t;

}

Runnable object starts

thread execution.

Implements the Runnable

interface.

CNT 4714: Threading Part 1 Page 22 Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do

public void run() {

for (int i = 0; i < times; i++)

System.out.print(charToPrint);

}

}

// The thread class for printing number from 1 to n for a given n

class PrintNum implements Runnable {

private int lastNum;

// Construct a thread for print 1, 2, ... i

public PrintNum(int n) {

lastNum = n;

}

// Tell the thread how to run

public void run() {

for (int i = 1; i <= lastNum; i++)

System.out.print(" " + i);

}

}

} //end class TestRunnable

Override the run method for

both types of threads.

CNT 4714: Threading Part 1 Page 23 Mark Llewellyn ©

Sample executions of class TestRunnable. Notice that

the output from the three threads is interleaved. Also

notice that the output sequence is not repeatable.

CNT 4714: Threading Part 1 Page 24 Mark Llewellyn ©

Some Modifications to the Example

• To illustrate some of the methods in the Thread class, you

might want to try a few modifications to the TestRunnable

class in the previous example. Notice how the modifications

change the order of the numbers and characters in the output.

• Use the yield() method to temporarily release time for other

threads to execute. Modify the code in the run method in

PrintNum class to the following:

– Now every time a number is printed, the print20 thread yields, so

each number will be followed by some characters.

public void run() {

for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);

Thread.yield();

}

CNT 4714: Threading Part 1 Page 25 Mark Llewellyn ©

Some Modifications to the Example (cont.)

• The sleep(long millis) method puts the thread to sleep

for the specified time in milliseconds. Modify the code in the

run method in PrintNum class to the following:

– Now every time a number greater than 10 is printed, the print20

thread is put to sleep for 2 milliseconds, so all the characters will

complete printing before the last integer is printed.

public void run() {

for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);

try {

if (i >= 10) Thread.sleep(2);

}

catch (InterruptedException ex) { }

}

}

CNT 4714: Threading Part 1 Page 26 Mark Llewellyn ©

Some Modifications to the Example (cont.)

• You can use the join() method to force one thread to wait for

another thread to finish. Modify the code in the run method in

PrintNum class to the following:

– Now the numbers greater than 10 are printed only after thread

printA is finished.

public void run() {

for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);

try {

if (i == 10) printA.join();

}

catch (InterruptedException ex) { }

}

}

CNT 4714: Threading Part 1 Page 27 Mark Llewellyn ©

Other Java Classes and Threads

• We noted earlier that Java has several different classes that

support the creation and scheduling of threads. Classes

java.util.Timer and java.util.TimerTask are

generally the easiest to use. They allow a thread to be created

and run either at a time relative to the current time or at some

specific time.

• We’ll look at these classes briefly and give a couple of

examples.

CNT 4714: Threading Part 1 Page 28 Mark Llewellyn ©

Java Classes and Threads (cont.)

• Class Timer overloads the schedule() method three times

for creating threads after either some specified delay or at some

specific time.

– public void schedule(TimerTask task, long m);

• Runs task.run() after waiting m milliseconds.

– public void schedule(TimerTask task, long m, long n);

• Runs task.run() after waiting m milliseconds, then repeats it every n

milliseconds.

– Public void schedule(TimerTask task, Date t);

• Runs task.run() at the time indicated by date t.

• By extending the abstract class TimerTask and specifying

a definition for its abstract method run(), an application-

specific thread can be created.

CNT 4714: Threading Part 1 Page 29 Mark Llewellyn ©

Example – Thread Execution After a Delay

• The code listing on the following page gives a very simple

example of executing a thread after a delay (using the first

schedule() method from the previous page).

• The thread in this example, simply prints a character 10

times and then ends.

• Look at the code and follow the flow, then execute it on your

machine (code appears on the course webpage).

CNT 4714: Threading Part 1 Page 30 Mark Llewellyn ©

//displays characters in separate threads
import java.util.*;
public class DisplayCharSequence extends TimerTask {

private char displayChar;
Timer timer;

//constructor for character displayer
public DisplayCharSequence(char c){

displayChar = c;
timer = new Timer();
timer.schedule(this, 0);

}

//display the occurrences of the character
public void run() {

for (int i = 0; i < 10; ++i) {
System.out.print(displayChar);

}
timer.cancel();

}

//main
public static void main (String[] args) {

DisplayCharSequence s1 = new DisplayCharSequence(‘M’);
DisplayCharSequence s2 = new DisplayCharSequence(‘A’);
DisplayCharSequence s3 = new DisplayCharSequence(‘R’);
DisplayCharSequence s4 = new DisplayCharSequence(‘K’);

}
}

Start thread execution

after a 0 msec delay

(i.e., immediately)

A subclass implementation of

TimerTask’s abstract method

run() has typically two parts –

first part is application specific

(what the thread is supposed to

do) and the second part ends

the thread.

CNT 4714: Threading Part 1 Page 31 Mark Llewellyn ©

It worked right!!!

CNT 4714: Threading Part 1 Page 32 Mark Llewellyn ©

Example – Repeated Thread Execution

• This next example demonstrates how to schedule a thread to

run multiple times. Basically, the thread updates a GUI-

based clock every second.

Sample

GUI

CNT 4714: Threading Part 1 Page 33 Mark Llewellyn ©

//displays current time – threaded execution

import java.util.*;

import javax.swing.JFrame;

import java.text.*;

import java.awt.*;

public class BasicClock extends TimerTask {

final static long MILLISECONDS_PER_SECOND = 1000;

private JFrame window = new JFrame(“Basic Clock”);

private Timer timer = new Timer();

private String clockFace = “”;

//constructor for clock

public BasicClock(){

//set up GUI

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

window.setSize(200,60);

Container c = window.getContentPane();

c.setBackground(Color.WHITE);

window.setVisible(true);

//update GUI every second beginning immediately

timer.schedule(this,0,1*MILLISECONDS_PER_SECOND);

}

Two tasks: (1) configure the GUI

and (2) schedule the thread to

update the GUI-clock every

second.

This form of the overloaded schedule() method is

the second one shown on page 28 which uses a

delay and a repetition factor.

CNT 4714: Threading Part 1 Page 34 Mark Llewellyn ©

//display updated clock

public void run(){

Date time = new Date();

Graphics g = window.getContentPane().getGraphics();

g.setColor(Color.WHITE);

g.drawString(clockFace, 10, 20);

clockFace = time.toString();

g.setColor(Color.BLUE);

g.drawString(clockFace,10, 20);

}

//main

public static void main (String[] args) {

BasicClock clock = new BasicClock();

}

}

Date() returns current time to the

millisecond. toString() method returns a

textual representation of the date in the

form: w c d h:m:s z y

Where: w: 3 char-rep of day of week

c: 3 char-rep of month

d: 2 digit-rep of day of month

h: 2 digit-rep of hour

m: 2 digit-rep of minute within hr

s: 2 digit-rep of second within min

z: 3 char-rep of time zone

y: 4 char-rep of year

CNT 4714: Threading Part 1 Page 35 Mark Llewellyn ©

!! CAUTION !!

• Java provides two different standard classes named Timer. The class

we’ve used in the past two examples is part of the util API. There is

also a Timer class that is part of the swing API.

• In our previous example, we needed to make sure that we didn’t
inadvertently bring both Timer classes into our program which would

have created an ambiguity about which Timer class was being used.

• Although you cannot import both Timer classes into a single Java

source file, you can use both Timer classes in the same Java source file.

An import statement exists to allow a syntactic shorthand when using

Java resources; i.e., an import statement is not required to make use of

Java resources. Using fully qualified class names will remove the

ambiguity.

– java.util.Time t1 = new java.util.Timer();

– javax.swing.Timer t2 = new javax swing.Timer();

CNT 4714: Threading Part 1 Page 36 Mark Llewellyn ©

Example – Thread Execution At Specific Time

• This next example demonstrates how to schedule a thread to

run at a specific time. This example will create a couple of

threads to remind you of impending appointments.

Basically, the thread pops-up a window to remind you of the

appointment.

This window pops

up 3 minutes

later

Sample

DisplayAlert

Window

CNT 4714: Threading Part 1 Page 37 Mark Llewellyn ©

Third version of

schedule() method as

shown on page 28.

CNT 4714: Threading Part 1 Page 38 Mark Llewellyn ©

Sleeping

• In the three examples so far, all the threads performed some

action. Threads are also used to pause a program for some

period of time.

• Standard class java.lang.Thread has a class method

sleep() for pausing the flow of control.

public static void sleep (long n) throws InterruptedException

• For example, the following code segment will twice get and

display the current time, but the time acquisitions are

separated by 10 seconds by putting the process to sleep.

CNT 4714: Threading Part 1 Page 39 Mark Llewellyn ©

Put the process to sleep

for 10 seconds.

CNT 4714: Threading Part 1 Page 40 Mark Llewellyn ©

Notice that the process has

slept for exactly 10 seconds

in each case.

CNT 4714: Threading Part 1 Page 41 Mark Llewellyn ©

Life Cycle of a Thread

• At any given point in time, a thread is said to be in one of several

thread states as illustrated in the diagram below.

NEW

Terminated

Runnable

Blocked

Waiting

wait()

notify() or

notifyAll()

interrupt()

signalstart()

run()

terminates

Non-executing

threads

CNT 4714: Threading Part 1 Page 42 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

The thread constructor is called

to create a new instance of the

Thread class.

1

CNT 4714: Threading Part 1 Page 43 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

start()

The start() method is

invoked to designate the

thread as runnable.2

CNT 4714: Threading Part 1 Page 44 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

3

The Java thread

scheduler runs the

thread as the

processor becomes

available

CNT 4714: Threading Part 1 Page 45 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

5If the thread invokes the wait()

method, it is put into the waiting

state and will remain there until

another thread invokes the notify()

or notifyAll() method.

CNT 4714: Threading Part 1 Page 46 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

6
The thread ends when the

run method terminates.

CNT 4714: Threading Part 1 Page 47 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

NEW

Terminated

Runnable

Blocked

Waiting

4

The thread can become

blocked for various reasons

and will not run again until it

is returned to the runnable

state.

CNT 4714: Threading Part 1 Page 48 Mark Llewellyn ©

Summary of States In The Life Cycle of a Thread

State Description

New
The thread has been created (its constructor has been invoked), but not

yet started.

Runnable

The thread’s start() method has been invoked and the thread is available

to be run by the thread scheduler. A thread in the Runnable state may

actually be running, or it may be waiting in the thread queue for an

opportunity to run.

Blocked

The thread has been temporarily removed from the Runnable state so

that it cannot be executed. This can happen if the thread’s sleep()

method is invoked, if the thread is waiting on I/O, or if the thread requests

a lock on an object that is already locked. When the condition changes,

the thread will be returned to the Runnable state.

Waiting
The thread has invoked its wait() method so that other threads can

access an object. The thread will remain in the Waiting state until

another thread invokes the notify() or notifyAll() method.

Terminated The thread’s run() method has ended.

CNT 4714: Threading Part 1 Page 49 Mark Llewellyn ©

Life Cycle of a Thread – A Slightly Different View

• At any given point in time, a thread is said to be in one of

several thread states as illustrated in the diagram below.

terminated

running

readynew

blocked

Thread

created

start()

Wait for target

to finish
Wait for timeout

Wait to be

notified

sleep()

wait()

interrupt()target

finished

interrupt()

notify() or

notifyAll()

join()

timeout

CNT 4714: Threading Part 1 Page 50 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A new thread begins its life cycles in the new state. It remains in this
state until the program starts the thread, which places the thread in the
ready state (also commonly referred to as the runnable state). A
thread in this state is considered to be executing its task, although at
any given moment it may not be actually executing.

• When a ready thread begins execution, it enters the running state. A
running thread may return to the ready state if its CPU time slice
expires or its yield() method is invoked.

• A thread can enter the blocked state (i.e., it becomes inactive) for
several reasons. It may have invoked the join(), sleep(), or
wait() method, or some other thread may have invoked these
methods. It may be waiting for an I/O operation to complete.

• A blocked thread can be reactivated when the action which
inactivated it is reversed. For example, if a thread has been put to
sleep and the sleep time has expired, the thread is reactivated and
enters the ready state.

CNT 4714: Threading Part 1 Page 51 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A thread is terminated if it completes the execution of its
run() method.

• The isAlive() method is used to query the state of a thread.
This method returns true it a thread is in the ready, blocked, or
running state; it returns false if a thread is new and has not
started or if it is finished.

• The interrupt() method interrupts a thread in the
following way: If a thread is currently in the ready or running
state, its interrupted flag is set; if a thread is currently blocked,
it is awakened and enters the ready state, and a
java.lang.InterruptedException is thrown.

• Threads typically sleep when they momentarily do not have
work to perform. Example, a word processor may contain a
thread that periodically writes a copy of the current document
to disk for recovery purposes.

CNT 4714: Threading Part 1 Page 52 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A runnable thread enters the terminated state when it completes

its task or otherwise terminates (perhaps due to an error

condition).

• At the OS level, Java’s runnable state actually encompasses two

separate states. The OS hides these two states from the JVM,

which sees only the runnable state.

– When a thread first transitions to the runnable state from the new

state, the thread is in the ready state. A ready thread enters the

running state (i.e., begins execution) when the OS assigns the thread

to a processor (this is called dispatching the thread). In most OS,

each thread is given a small amount of processor time – called a

quantum or time slice – with which to perform its task. When the

thread’s quantum expires, the thread returns to the ready state and the

OS assigns another thread to the processor. Transitions between

these states are handled solely by the OS.

CNT 4714: Threading Part 1 Page 53 Mark Llewellyn ©

Thread Priorities

• Every Java thread has a priority that helps the OS determine
the order in which threads are scheduled.

• Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10).

• Threads with a higher priority are more important to a
program and should be allocated processor time before
lower-priority threads. However, thread priorities cannot
guarantee the order in which threads execute.

• By default, every thread is given priority
NORM_PRIORITY (a constant of 5). Each new thread
inherits the priority of the thread that created it.

CNT 4714: Threading Part 1 Page 54 Mark Llewellyn ©

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY

Thread.NORM_PRIORITY

Thread Priority Scheduling

CNT 4714: Threading Part 1 Page 55 Mark Llewellyn ©

Creating and Executing Threads
• In J2SE 5.0, the preferred means of creating a multithreaded

application is to implement the Runnable interface

(package java.lang) (see earlier examples also) and use

built-in methods and classes to create Threads that

execute the Runnables.

• The Runnable interface declares a single method named

run, Runnables are executed by an object of a class that

implements the Executor interface (package

java.util.concurrent). This interface declares a

single method named execute.

• An Executor object typically creates and manages a group

of threads called a thread pool. These threads execute the

Runnable objects passed to the execute method.

CNT 4714: Threading Part 1 Page 56 Mark Llewellyn ©

Creating and Executing Threads (cont.)

• The Executor assigns each Runnable to one of the

available threads in the thread pool. If there are no available

threads in the thread pool, the Executor creates a new thread

or waits for a thread to become available and assigns that thread
the Runnable that was passed to method execute.

• Depending on the Executor type, there may be a limit to the

number of threads that can be created. Interface
ExecutorService (package java.util.concurrent) is a

subinterface of Executor that declares a number of other

methods for managing the life cycle of the Executor. An object

that implements this ExecutorService interface can be created

using static methods declared in class Executors (package

java.util.concurrent). The next examples illustrates

these.

CNT 4714: Threading Part 1 Page 57 Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// PrintTask class sleeps for a random time from 0 to 5 seconds

import java.util.Random;

public class PrintTask implements Runnable

{

private int sleepTime; // random sleep time for thread

private String threadName; // name of thread

private static Random generator = new Random();

// assign name to thread

public PrintTask(String name)

{

threadName = name; // set name of thread

// pick random sleep time between 0 and 5 seconds

sleepTime = generator.nextInt(5000);

} // end PrintTask constructor

CNT 4714: Threading Part 1 Page 58 Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// method run is the code to be executed by new thread

public void run()

{

try // put thread to sleep for sleepTime amount of time
{

System.out.printf("%s going to sleep for %d milliseconds.\n",

threadName, sleepTime);

Thread.sleep(sleepTime); // put thread to sleep

} // end try

// if thread interrupted while sleeping, print stack trace

catch (InterruptedException exception)

{

exception.printStackTrace();

} // end catch

// print thread name

System.out.printf("%s done sleeping\n", threadName);

} // end method run

} // end class PrintTask

CNT 4714: Threading Part 1 Page 59 Mark Llewellyn ©

Multithreading Example – Create Threads and Execute

// Multiple threads printing at different intervals.

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

public class RunnableTester

{

public static void main(String[] args) {

// create and name each runnable

PrintTask task1 = new PrintTask("thread1");

PrintTask task2 = new PrintTask("thread2");

PrintTask task3 = new PrintTask("thread3");

System.out.println("Starting threads");

// create ExecutorService to manage threads

ExecutorService threadExecutor = Executors.newCachedThreadPool();

// start threads and place in runnable state

threadExecutor.execute(task1); // start task1

threadExecutor.execute(task2); // start task2

threadExecutor.execute(task3); // start task3

threadExecutor.shutdown(); // shutdown worker threads

System.out.println("Threads started, main ends\n");

} // end main

} // end class RunnableTester

CNT 4714: Threading Part 1 Page 60 Mark Llewellyn ©

Example Executions of

RunnableTester.java

